Anlage zum Abschlussbericht

Die wichtigsten wissenschaftlich-technischen Ergebnisse

Die zur Erreichung des Projektzieles vorgesehenen Arbeitspakete sowie der aktuelle Bearbeitungsstand zum Zeitpunkt der Erarbeitung der Projektabschlussunterlagen sind in nachfolgender Übersicht zusammengestellt:

Tabelle 1: Arbeitspakete und deren zeitliche Einordnung

Nr.	Titel des Arbeitspakets	Zeitraum	Feder- führung	Bearbeitungs- stand
AP 1	Literaturrecherche und Marktanalyse	II.+III.Q. 2012	alle Partner	abgeschlossen
AP 2	Erarbeitung einer detaillierten Aufgabenstellung und von Ablaufplänen	IIIV.Q. 2012	alle Partner	abgeschlossen
AP 3	Konzeptionelle Arbeiten zum Korrosionsmechanismus und zur Pulverlackformulierung	II.Q 2012 - I.Q. 2013	IKS und ZAFT	Weiterführung auch nach Projektabschluss
AP 4	Untersuchungen zum Einfluss verschiedener Stähle	III.Q. 2012 - II.Q. 2013	alle Partner	abgeschlossen
AP 5	Untersuchung der Oberflächenvorbereitung Strahlen, Prinzipuntersuchungen zum Strahlen	IV.Q. 2012 - I.Q. 2014	ZAFT, Torwerk und IKS	abgeschlossen
AP 6	Untersuchung der Oberflächenvorbereitung (nasschemisch), Prinzipuntersuchungen zur Vorbehandlung	IV.Q. 2012 - II.Q. 2014	ZAFT, B&H und IKS	abgeschlossen
AP 7	Entwicklung praxisgerechter Musterbauteile unter Berücksichtigung kritischer Bauteilgeometrien	III.Q. 2012 - II.Q. 2014	alle Partner	abgeschlossen
AP 8	Erarbeitung von Prüfregimen, Belastung und Prüfung von Musterplatten und Musterbauteilen	II.Q. 2012 - II.Q. 2014	alle Partner	abgeschlossen
AP 9	Konzeptionelle Arbeiten zur Vorbereitung/Vorbehandlung und Applikation neuentwickelter Pulverlackformulierungen	IV.Q. 2012 - IV.Q. 2014	alle Partner	abgeschlossen
AP 10	Entwicklung verschiedener Schichtaufbauten unter unter- schiedlichen Belastungen und unter Praxisbedingungen	III.Q. 2013 - IV.Q. 2014	alle Partner	abgeschlossen
AP 11	Auslagerung von Musterbauteilen und Prüfplatten, Freibewitterung, Betreuung der Außenversuche	III.Q. 2012 – I.Q. 2015	alle Partner	Weiterführung auch nach Projektabschluss
AP 12	Grundlegende Untersuchungen zu Korrosions- mechanismen bei Verletzung von Beschichtungen	III.Q. 2012 - I.Q. 2015	IKS und ZAFT	abgeschlossen
AP 13	Erarbeitung einer Reparaturtechnologie mit Flüssigbe- schichtungsstoffen auch unter praxisrelevanten Gesichtspunkten und Austestung	III.Q.2013 – I.Q. 2015	alle Partner	abgeschlossen
AP 14	Vergleichende Untersuchungen mit ausgasungsarmen neuentwickelten Pulverformulierungen auf stückver- zinkten Stahl, Prüfung, Auslagerung und Betreuung der Freiversuche	III.Q. 2012 – I.Q. 2015	alle Partner	abgeschlossen
AP 15	Ermittlung und Bearbeitung von Anwenderempfehlungen und Anwendervorschriften	I.Q. 2015	B&H, ZAFT und Torwerk	noch in Bearbeitung
AP 16	Zwischenauswertung, Endauswertung, Berichterstattung	März 2013 März 2014 März 2015	alle Partner	planmäßig

1 Genesis von Pulverlacken

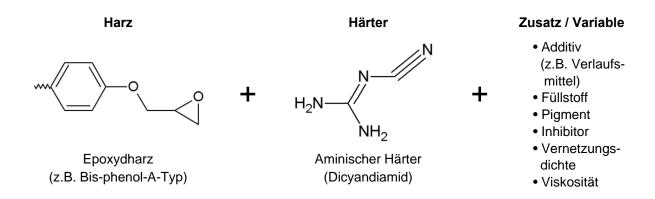
Da Standardpulverlacksysteme zurzeit nicht die Anforderungen der Zielstellung des Projektes – höchste korrosive Anforderungen ohne Verwendung von Feuerzinküberzügen entsprechend den etablierten Duplexsystemen - erfüllen, war eine der vordringlichsten Aufgabenstellung des Forschungsthemas die Neuformulierung von Grundierpulvern. Diese Pulverentwicklungen waren vor allem für Substrate mit einer Oberflächenvorbereitung durch Strahlen relevant. Die Ergebnisse dieser Entwicklungen flossen aber auch in den umfangreichen Themenkomplex der nasschemischen Oberflächenvorbehandlung mit ein. Für die Arbeitspakete, die die nasschemische Vorbehandlung betreffen, wurden im Laufe der Grundierpulvergenesis ausgewählte Pulverentwicklungen eingesetzt, die sich bis dahin bereits durch gute bis sehr gute Werte auszeichneten.

Formulierungen von Pulvergrundierungen im Rahmen des Forschungsthemas (Härtervarianten) und deren Verwendung in den Versuchsserien:

$$H_2N$$
 N
 NH_2

Aminischer Härter
(Dicyandiamid)
Verwendung in den Versuchsserien

Phenolischer Härter (Resol) Verwendung in den Versuchsserien


Vernetzung mit Aminen

Vernetzung mit carbonsäure-haltigen Polymeren

Vernetzung mit carbonsäure-haltigen Polymeren (Formulierung als MEP) Verwendung in den Versuchsserien Grundsätzlich wurde bei der Projektbearbeitung davon ausgegangen, dass ein zweischichtiges Pulversystem appliziert werden muss. Da für die Korrosionsschutzwirkung vornehmlich die Pulvergrundierung verantwortlich zeichnet (Permeation durch Barriereeigenschaften, Haftfestigkeit durch Vernetzung und Einsatz korrosionsinhibierender Substanzen), wurden beim assozierend mitarbeitenden AKZO-Nobel-Konzern ca. 100 Pulvergrundierungen neuformuliert, von denen schließlich 18 innerhalb des Projektes in insgesamt 8 Versuchsserien von den Projektpartnern sowohl unter Praxisbedingungen als auch unter Laborbedingungen ausgetestet wurden. Dazu wurde die Vielzahl der Proben normgerecht Belastungen und Prüfungen ausgesetzt.

Als Deckpulver diente bei allen Versuchsserien das Standard – Polyesterpulver SA J 16 G. Das Produkt ist glänzend, besitzt den Farbton RAL 9016 (Verkehrsweiß) und verfügt über GSB- und Qualicoat-Zulassung.

Grundlegender Aufbau der entwickelten und getesteten Pulvergrundierungen (hier am Beispiel der Epoxydharze vom Bis-phenol-A-Typ, Dicyandiamid gehärtet):

Die korrosionsinhibierenden Eigenschaften der Pulvergrund-Entwicklungen im Rahmen des Forschungsthemas werden im Wesentlichen durch den Einsatz von Additiven und Füllstoffen bewirkt. Auf Grund der Tatsache, dass Pulverlacke durch die Abwesenheit von Lösungsmitteln (in ihrer Liquid-Phase) eine relativ hohe Oberflächenspannung aufweisen, ist der Reinigung und Vorbehandlung / Vorbereitung der zu beschichtenden und zu schützenden Substrate besondere Aufmerksamkeit zu widmen, um eine mangelhaften Benetzung der Metalloberflächen zu umgehen. Schlechte Benetzungen führen in der Regel auch zu Haftungsproblemen und somit auch zur Korrosionsneigung (Unterostung).

Füllstoffe und Korrosionsschutzpigmente hemmen oder verhindern in Grundierungen in der Regel durch physikalische, physikalisch-chemische oder chemische Wirkung die Korrosion von Metalloberflächen. Die physikalische Schutzwirkung von Füllstoffen und Pigmenten beruht im Allgemeinen auf ihrer Barrierewirkung und durch ihre Verlängerung der Diffusionswege von Atmosphärilien im Pulverlack.

Bei der Entwicklung der Pulverformulierungen spielten bei zunehmendem Projektfortschritt Korrosionsschutzpigmente, wie z.B. Eisenglimmer, eine zentrale Rolle. Eisenglimmer-Pigment ist ein gereinigtes Mineral (Hämatit, Fe₂O₃) und weist eine ausgeprägte Schuppenstruktur auf. Die korrosionsschützende Wirkung von Eisenglimmer beruht ausschließlich auf seiner Barrierewirkung.

In der nachfolgenden Tabelle sind die Pulvergrund-Neuformulierungen im Themenrahmen dargestellt:

Tabelle 2 Projektseitig ausgetestete Pulvergrundierungen

Pulver- neuentwicklung	Versuchs- serie	Harz	Härter	Vernetzungs -dichte	Viskosität	Additionen
Standard	1	Bis-A	DICY		hö her	1;1
1	1		Matthärter		höher	
2	2+3	Bis-A	DICY		höher	1;1
3	2	Ероху	phenolisch		höher	1;-1
4	4	Bis-A	DICY		geringer	1
5	4	Bis-A	DICY		geringer	2;+5
6	4	Bis-A	DICY		geringer	1;+5
7	4	Bis-A	DICY	höher	geringer	1;+5
8	4	Bis-A	DICY	niedriger	geringer	1;+5
9	6	Hybrid	Poly			
10	6	Hybrid	Poly			
11	6	Bis-A	DICY		geringer	1;+1
12	6	Bis-A	DICY		geringer	1;+4
13	6	Bis-A	DICY		geringer	1;1;6
14	6	Bis-A	DICY		geringer	1;+8
15	6	Bis-A	DICY		noch geringer	1
16	6	Bis-A	DICY		geringer	2 +7
17	6	Bis-A	DICY		noch geringer	7+8;1;4;6
18	6	Bis-A	DICY		geringer	1;+7

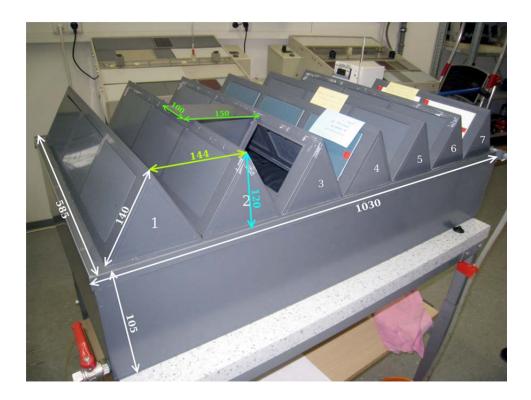
Im Laufe der Entwicklungsarbeiten wurde mit unterschiedlichen Füllstoffen, Inhibitoren und Additiven in unterschiedlichen Konzentrationen gearbeitet, und die Korrelation zwischen den gegensätzlichen Wirkprinzipien Vernetzungsdichte und Haftfestigkeit (Unterwanderung am Ritz) wurde dadurch optimiert.

Die in der obigen Tabelle aufgeführten Pulvergrundierungen wurden entsprechend den umfangreichen Komplettprogrammen in den Versuchsserien belastet, geprüft und bewertet.

Dabei zeigten bisher die entwickelten Systeme 2, 4 und 6 und vor allem 17 mit Unterwanderungen am Ritz \leq 2mm bei Vorbereitung und Unterwanderung am Ritz \leq 0,4mm bei Vorbehandlung die besten Ergebnisse.

2 Gerätetechnische Neuentwicklung beim Projektpartner ZAFT

Das Gerät ermöglicht die Bestimmung der Beständigkeit von Beschichtungen und von Beschichtungssystemen unter den Bedingungen hoher Feuchtigkeit. Der Test ist ein wichtiger Bestandteil der Prüfungen und Belastungen im Projektrahmen und dient zur Bewertung der Kondenswasserkonstantklimabeständigkeit für die projektseitig neuentwickelten Pulverlacksysteme.

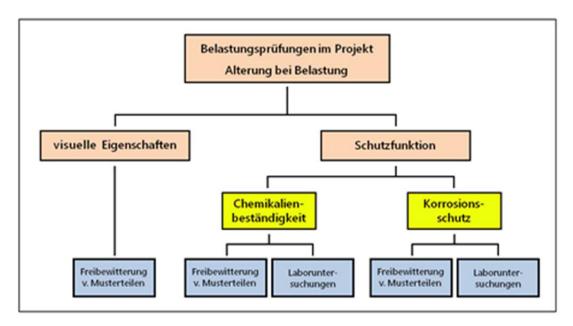

Das Gerät besteht aus einem beheizten Wasserbad, in dessen Abdeckung die Probeplatten und/oder Abdeckplatten eingelegt werden. Über dem Wasserbad bildet sich im Gerät eine gesättigte Dampfphase heraus. Das Gerät am ZAFT wurde so gebaut, dass es für Prüfplatten und/oder Abdeckplatten der Größe 100x150x (höchstens) 3,5 mm geeignet ist (Größe der meisten im Projekt hergestellten Prüfplatten). Die Prüfplatten liegen in einem Winkel von 60° zur Horizontalen auf. Damit ist gewährleistet, dass das Kondenswasser ungehindert ablaufen kann. Entlang des Probenquerschnitts bildet sich ein Temperaturgradient aus, da die Probenrückseite Normalklima (23°C, 50% RLF) ausgesetzt ist.

Prüfbedingungen:

- Temperatur des Wasserbades: 38°C

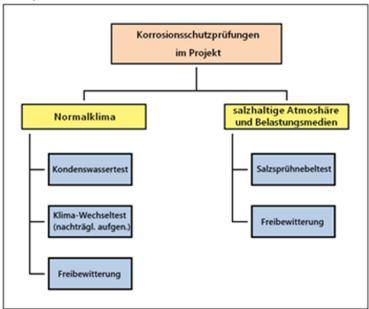
- Prüfdauer: 720 Stunden, Zwischenauswertung nach 480 Stunden

- Beschichtung der Platten: beidseitig



Kondenswasserkonstantklima – Projektseitig entwickeltes Testgerät beim Projektpartner ZAFT

3 Untersuchungsmethoden und Forschungskomplex


Alterungsprüfungen

Bei der Auswahl und Festlegung der Alterungsprüfungen der entwickelten und geprüften Pulverlacksysteme stand die Schädigung der Schutzfunktion (Blasenbildung, Rissbildung, Enthaftung mit nachfolgender Schädigung des Substrates) im Vordergrund und nicht die Beeinträchtigung der visuellen Eigenschaften (Farbtonverschiebungen, Glanzabfall, Kreidung).

Übersicht über die Alterungsprüfungen im Projekt

Funktionsbezogene Veränderungen durch Belastung und Alterung der im Projekt entwickelten und untersuchten Pulverlacksysteme:

Übersicht über die Korrosionsschutzprüfungen im Projekt

4 Nasschemische Vorbehandlung

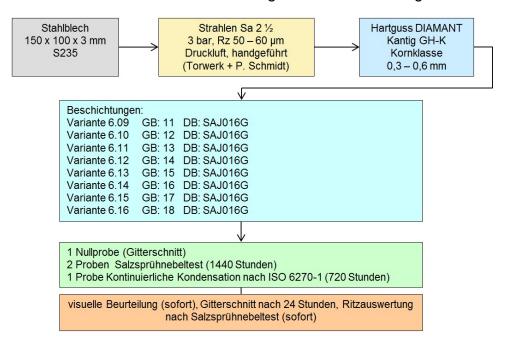
Alternativ-Vorbehandlungssysteme von SurTec und Alufinish

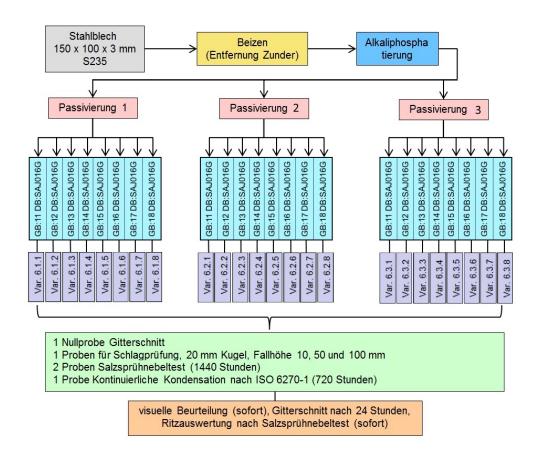
	Prüfplatten: SurTec										
Variante	Nr.	Schichtdicke	Nullprobe Gitterschnitt	Kondens wassertest 720 h	neutraler Salzsprühnebeltest, 1440 h; Unterwanderung am Ritz						
	1	84 ± 17			3,3 ± 0,8						
	2	79 ± 19			2,8 ± 0,8						
1	3	78 ± 14		GT 0-1							
	4	84 ± 19		GT 0	-						
	5	81 ± 20	GТ0		0 0 0						
	1	85 ± 17			1,8 ± 0,8						
	2	84 ± 18			2,5 ± 0,9						
2	3	86 ± 17		GT 0							
	4	77 ± 12		GT 0	E Y						
	5	70 ± 19	GT0		0 106 0						

Legende: Variante 1: SurTec 618LT (nickelfreie Mehrionenphosphatierung)

Variante 2: SurTec 609 GV (phosphatfrei)

	Prüfplatten: Alufinish								
Nr.	Schichtdicke	NSS 1400 h UW am Ritz							
1	178 ± 23	$2,4 \pm 0,8$							
2	185 ± 15	1.4 ± 0.6							


Legende: Alfipas 7816 in Verbindung mit dem ENVIROX SG Verfahren (Sol-Gel-Prozess)



5 Pulverneuentwicklungen Versuchsserie 6

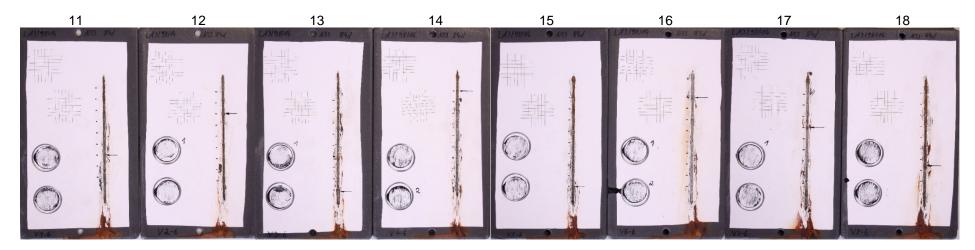
Versuchsschemata Oberflächenvorbereitung und -vorbehandlung

Schema zu Versuchsplan Versuchsserie 6 Torwerk Weimar

Schema zu Versuchsplan Versuchsserie 6 Böhm & Hempel

Ergebnisse zu Versuchsserie 6 Torwerk Weimar - Oberflächenvorbereitung durch Strahlen

Torwerk Weimar	6.0	09	6.10 6.11		6.	6.12 6.13		6.	14	6.	15	6.	16			
Pulverneuentwicklung	1	1	12 13		3	1	.4	15		16		1	7	1	8	
Viskosität	gerii	nger	geringer		geringer		geri	geringer		noch geringer		geringer		eringer	geri	nger
Füllstoff	FS	1	FS	1	FS	1	FS	1	FS	1	FS 2	+ FS 7	FS 7	+ FS 8	FS 1	
Additionen 1; +1		+1	1;	+4	1;1	1;6	1;	+8	1	L	2 -	+ 7	7 + 8; 1; 4; 7		1; +7	
					Sal	lzsprühne	ebeltest 1	440 Stun	den							
Proben-Nr.	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
Schichtdicke	225 ± 19	178 ± 21	175 ± 19	175 ± 35	199 ± 29	188 ± 8	218 ± 21	207 ± 24	146 ± 12	209 ± 18	171 ± 16	164 ± 19	188 ± 27	205 ±21	191 ± 25	209 ± 22
Gitterschnitt-Kennwert	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blasengrad	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Korrosion am Ritz (max.)	2,5	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	2,5	2,5	2,5	3,5	3,0
Korrosion am Ritz (MW)	$2,0 \pm 0,3$	$2,2 \pm 0,4$	2,2 ± 0,5	$2,3 \pm 0,3$	$2,4 \pm 0,4$	$2,2 \pm 0,3$	2,4 ± 0,2	2,1 ± 0,4	$2,2 \pm 0,3$	1,8 ± 0,5	2,3 ± 0,5	2,0 ± 0,4	1,5 ± 0,5	1,9 ± 0,4	2,5 ± 0,5	2,0 ± 0,7
Enthaftung am Ritz (MW)	$2,0 \pm 0,3$	2,2 ± 0,4	2,2 ± 0,5	$2,3 \pm 0,3$	$2,4 \pm 0,4$	$2,2 \pm 0,3$	2,4 ± 0,2	2,1 ± 0,4	$2,2 \pm 0,3$	1,8 ± 0,5	2,3 ± 0,5	2,0 ± 0,4	1,5 ± 0,5	1,9 ± 0,4	2,5 ± 0,5	$2,0 \pm 0,7$
					Ko	ndenswa	ssertest	720 Stund	den							
Proben-Nr.	3	3	***	3	(0)	3	3	3	(1)	3		3		3	3	3
Schichtdicke	196	± 13	173	± 25	216 ± 18		241 ± 30		168 ± 12		152 ± 17		216 ± 27		185 ± 23	
Gitterschnitt-Kennwert	()	()	()	(0	()	0		0		()
Blasengrad	()	()	()	()	()	(0		0	()
						Sc	hlagversu	uch								
Proben-Nr.	4	1	1	1	4	1	1	4	4	1		4		4	1	1
Schichtdicke	216	± 26	202	± 31	189	± 22	241	± 46	166	± 17	239	± 35	211	± 34	184	± 22
Fallhöhe 50 cm	i.C	0.	j.0	O.	i.C	D.	j.0	0.	i.C	O.	į,	0.	i.	0.	j.C	O.
Fallhöhe 100 cm	i.C	0.	i.0	O.	i.C	D.	i.c	0.	i.C	O.	į,	0.	Abplatzi	ungen VS	i.O.	
							Nullprob	e								
Proben-Nr.	5	5		5	5	5		5	5	5	5		5		5	
Schichtdicke	210	± 29	191	± 30	186	± 27	170	± 17	170	± 19	220	± 23	194	± 21	183	± 14
Gitterschnitt-Kennwert	()	()	()	()	C)	(0		0	()


Ergebnisse zu Versuchsserie 6 Böhm & Hempel – Oberflächenvorbehandlung durch Alkaliphosphatierung und unterschiedliche Passivierungsverfahren

			r					
Pulverneuentwicklung		12	13	14	15	16	17	18
Viskosität		geringer	geringer	geringer	noch geringer	geringer	noch geringer	geringer
Füllstoff		FS 1	FS 1	FS 1	FS 1	FS 2 + FS 7	FS 7 + FS 8	FS 1
Additionen		1; +4	1;1;6	1; +8	1	2 + 7	7 + 8; 1; 4; 7	1; +7
Böhm & Hempel	6.1.1	6.1.2	6.1.3	6.1.4	6.1.5	6.1.6	6.1.7	6.1.8
				<mark>ebeltest 1440 Stun</mark> I	den I			
Proben-Nr.			1 2			1 2		
Schichtdicke			225 ± 19 178 ± 21			218 ± 21 207 ± 24		
Gitterschnitt-Kennwert								
Blasengrad		-	volle Enthaftung aus Test			volle Enthaftung	- 1	
Korrosion am Ritz (max.)			genommen			aus Test genommen		
Korrosion am Ritz (MW)			genommen			genommen		
Enthaftung am Ritz (MW)			K	720 54	1			
Dl N-	3	3	Kondenswa 3	assertest 720 Stund 3	aen 3	3	3	3
Proben-Nr. Schichtdicke	196 ± 13	173 ± 25	216 ± 18	241 ± 30	168 ± 12	152 ± 17	216 ± 27	185 ± 23
	GT 0	GT 0	GT 0	GT 0	GT 0	GT 0	GT 5	GT 0
Gitterschnitt-Kennwert							1000000	
Blasengrad	0(S0)	0(S0)	0(S0)	0(S0) Nullprobe	0(S0)	0(S0)	0(S0)	0(S0)
Proben-Nr.	4	4	4	Nullprobe 4	4	4	4	4
Schichtdicke	216 ± 26	202 ± 31	189 ± 22	241 ± 46	166 ± 17	239 ± 35	211 ± 34	184 ± 22
Gitterschnitt-Kennwert	GT 0	GT 0	GT 0	GT 0	GT 0	GT 0	GT 0	GT 0
Böhm & Hempel		6.2.2	6.2.3	6.2.4	6.2.5	6.2.6	6.2.7	6.2.8
Bonm & nemper	0.2.1	0.2.2		ebeltest 1440 Stun	100000000000000000000000000000000000000	0.2.0	0.2.7	0.2.6
Proben-Nr.		1 2	Jaizsprann	Deitest 1440 Stan	1 2			1 2
Schichtdicke		268 ± 17 240 ± 33			260 ± 11 224 ± 10			218 ± 15 218 ± 19
Gitterschnitt-Kennwert		200217 210200			200 2 2 2 7 2 2 7 2 2 7 2 7 2 7 2 7 2 7			220 2 20 2 20 2 20
Blasengrad		volle Enthaftung			volle Enthaftung			volle Enthaftung
Korrosion am Ritz (max.)	-	aus Test		-	aus Test	-	-	aus Test
Korrosion am Ritz (MW)		genommen			genommen			genommen
Enthaftung am Ritz (MW)								
			Kondenswa	assertest 720 Stund	den			
Proben-Nr.	3	3	3	3	3	3	3	3
Schichtdicke		212	260	194	214	222	270	234
Gitterschnitt-Kennwert	344							
Oraci Schiller Verilliweit	344 GT 0	GT 0	GT 5	GT 0	GT 5	GT 0	GT 0	GT 5
Blasengrad		GT 0 0(S0)	GT 5 0(S0)	GT 0 0(S0)	GT 5 0(S0)	GT 0 0(S0)	GT 0 0(S0)	GT 5 0(S0)
	GT 0							
	GT 0			0(S0)				
Blasengrad	GT 0 0(S0)	0(\$0)	0(\$0)	0(S0) Nullprobe	0(\$0)	0(\$0)	0(\$0)	0(\$0)
Blasengrad Proben-Nr.	GT 0 0(S0)	O(SO)	0(S0) 4	0(S0) Nullprobe 4	0(S0) 4	0(S0)	0(50)	0(S0) 4
Blasengrad Proben-Nr. Schichtdicke	GT 0 0(S0) 4 254 GT 0	0(S0) 4 236	0(S0) 4 314	O(SO) Nullprobe 4 238	0(S0) 4 224	0(S0) 4 206	0(S0) 4 310	0(S0) 4 210
Blasengrad Proben-Nr. Schichtdicke Gitterschnitt-Kennwert	GT 0 0(S0) 4 254 GT 0	0(S0) 4 236 GT 0	0(S0) 4 314 GT 5 6.3.3	0(S0) Nullprobe 4 238 GT 5	0(S0) 4 224 GT 5 6.3.5	0(S0) 4 206 GT 5	0(S0) 4 310 GT 0	0(S0) 4 210 GT 0
Blasengrad Proben-Nr. Schichtdicke Gitterschnitt-Kennwert	GT 0 0(S0) 4 254 GT 0	0(S0) 4 236 GT 0	0(S0) 4 314 GT 5 6.3.3	0(S0) Nullprobe 4 238 GT 5 6.3.4	0(S0) 4 224 GT 5 6.3.5	0(S0) 4 206 GT 5	0(50) 4 310 GT 0 6.3.7	0(S0) 4 210 GT 0
Proben-Nr. Schichtdicke Gitterschnitt-Kennwert Böhm & Hempel	GT 0 0(50) 4 254 GT 0 6.3.1	0(SO) 4 236 GT 0 6.3.2	0(S0) 4 314 GT 5 6.3.3 Salzsprühne	0(\$0) Nullprobe 4 238 GT 5 6.3.4 ebeltest 1440 Stun	0(S0) 4 224 GT 5 6.3.5	0(SO) 4 206 GT 5 6.3.6	0(50) 4 310 GT 0 6.3.7	0(S0) 4 210 GT 0 6.3.8
Proben-Nr. Schichtdicke Gitterschnitt-Kennwert Böhm & Hempel	GT 0 0(S0) 4 254 GT 0 6.3.1	0(SO) 4 236 GT 0 6.3.2	0(S0) 4 314 GT 5 6.3.3 Salzsprühne	0(\$0) Nullprobe 4 238 GT 5 6.3.4 ebeltest 1440 Stun	0(S0) 4 224 GT 5 6.3.5	0(SO) 4 206 GT 5 6.3.6	0(50) 4 310 GT 0 6.3.7	0(S0) 4 210 GT 0 6.3.8
Proben-Nr. Schichtdicke Gitterschnitt-Kennwert Böhm & Hempel Proben-Nr. Schichtdicke	GT 0 0(\$0) 4 254 GT 0 6.3.1 1 2 330±21 300±28 0 0 0 0	0(SO) 4 236 GT 0 6.3.2	0(S0) 4 314 GT 5 6.3.3 Salzsprühne	0(S0) Nullprobe 4 238 GT 5 6.3.4 ebeltest 1440 Stun 1 2 290±23 292±17 0 0 0 0	0(S0) 4 224 GT 5 6.3.5	0(SO) 4 206 GT 5 6.3.6	0(SO) 4 310 GT 0 6.3.7 1 2 234±24 226±12	0(S0) 4 210 GT 0 6.3.8
Blasengrad Proben-Nr. Schichtdicke Gitterschnitt-Kennwert Böhm & Hempel Proben-Nr. Schichtdicke Gitterschnitt-Kennwert Blasengrad Korrosion am Ritz (max.)	GT 0 0(\$0) 4 254 GT 0 6.3.1 1 2 330±21 300±28 0 0 0 0 1,3 1,3	0(SO) 4 236 GT 0 6.3.2	0(S0) 4 314 GT 5 6.3.3 Salzsprühne	0(SO) Nullprobe 4 238 GT 5 6.3.4 ebeltest 1440 Stun 1 2 290±23 292±17 0 0 0 0 0,8 0,8	0(\$0) 4 224 GT 5 6.3.5 den 1 2	0(SO) 4 206 GT 5 6.3.6	0(SO) 4 310 GT 0 6.3.7 1 2 234±24 226±12 0 0 0 0 1,3 1,5	0(SO) 4 210 GT 0 6.3.8
Blasengrad Proben-Nr. Schichtdicke Gitterschnitt-Kennwert Böhm & Hempel Proben-Nr. Schichtdicke Gitterschnitt-Kennwert Blasengrad Korrosion am Ritz (max.) Korrosion am Ritz (MW)	GT 0 0(S0) 4 254 GT 0 6.3.1 1 2 330±21 300±28 0 0 0 0 1,3 1,3 0,5±0,3 0,8±0,3	0(SO) 4 236 GT 0 6.3.2	0(S0) 4 314 GT 5 6.3.3 Salzsprühne	0(SO) Nullprobe 4 238 GT 5 6.3.4 ebeltest 1440 Stundon 1 2 290±23 292±17 0 0 0 0 0,8 0,8 0,6±0,3 0,9±0,3	0(\$0) 4 224 GT 5 6.3.5 den 1 2	0(SO) 4 206 GT 5 6.3.6	0(SO) 4 310 GT 0 6.3.7 1 2 234±24 226±12 0 0 0 0 1,3 1,5 0,7±0,3 1,3±0,3	0(SO) 4 210 GT 0 6.3.8
Blasengrad Proben-Nr. Schichtdicke Gitterschnitt-Kennwert Böhm & Hempel Proben-Nr. Schichtdicke Gitterschnitt-Kennwert Blasengrad Korrosion am Ritz (max.)	GT 0 0(S0) 4 254 GT 0 6.3.1 1 2 330±21 300±28 0 0 0 0 1,3 1,3 0,5±0,3 0,8±0,3	0(SO) 4 236 GT 0 6.3.2	0(50) 4 314 GT 5 6.3.3 Salzsprühne 1 2	0(SO) Nullprobe 4 238 GT 5 6.3.4 ebeltest 1440 Stun 1 2 290±23 292±17 0 0 0 0 0,8 0,8 0,6±0,3 0,9±0,3 0,6±0,3 0,9±0,3	0(\$0) 4 224 GT 5 6.3.5 den 1 2	0(SO) 4 206 GT 5 6.3.6	0(SO) 4 310 GT 0 6.3.7 1 2 234±24 226±12 0 0 0 0 1,3 1,5	0(SO) 4 210 GT 0 6.3.8
Blasengrad Proben-Nr. Schichtdicke Gitterschnitt-Kennwert Böhm & Hempel Proben-Nr. Schichtdicke Gitterschnitt-Kennwert Blasengrad Korrosion am Ritz (max.) Korrosion am Ritz (MW) Enthaftung am Ritz (MW)	GT 0 0(S0) 4 254 GT 0 6.3.1 1 2 330±21 300±28 0 0 0 0 1,3 1,3 0,5±0,3 0,8±0,3 0,6±0,3 1,0±0,3	0(SO) 4 236 GT 0 6.3.2 1 2	0(50) 4 314 GT 5 6.3.3 Salzsprühne 1 2 Kondenswa	0(SO) Nullprobe 4 238 GT 5 6.3.4 ebeltest 1440 Stun 1 2 290±23 292±17 0 0 0 0,8 0,8 0,6±0,3 0,9±0,3 0,6±0,3 0,9±0,3 35sertest 720 Stune	0(SO) 4 224 GT 5 6.3.5 den 1 2	0(SO) 4 206 GT 5 6.3.6	0(SO) 4 310 GT 0 6.3.7 1 2 234±24 226±12 0 0 0 0 1,3 1,5 0,7±0,3 1,3±0,3 1,0±0,3 1,5±0,5	0(SO) 4 210 GT 0 6.3.8 1 2
Blasengrad Proben-Nr. Schichtdicke Gitterschnitt-Kennwert Böhm & Hempel Proben-Nr. Schichtdicke Gitterschnitt-Kennwert Blasengrad Korrosion am Ritz (max.) Korrosion am Ritz (MW) Enthaftung am Ritz (MW)	GT 0 0(S0) 4 254 GT 0 6.3.1 1 2 330±21 300±28 0 0 0 0 1,3 1,3 0,5±0,3 0,8±0,3 0,6±0,3 1,0±0,3	0(SO) 4 236 GT 0 6.3.2 1 2	0(50) 4 314 GT 5 6.3.3 Salzsprühne 1 2 Kondenswa	0(SO) Nullprobe 4 238 GT 5 6.3.4 ebeltest 1440 Stundon 1 2 2990±23 2992±17 0 0 0 0,8 0,8 0,6±0,3 0,9±0,3 0,6±0,3 0,9±0,3 33ssertest 720 Stundon 3	0(SO) 4 224 GT 5 6.3.5 den 1 2	0(SO) 4 206 GT 5 6.3.6	0(SO) 4 310 GT 0 6.3.7 1 2 234±24 226±12 0 0 0 0 1,3 1,5 0,7±0,3 1,3±0,3 1,0±0,3 1,5±0,5	0(SO) 4 210 GT 0 6.3.8 1 2
Blasengrad Proben-Nr. Schichtdicke Gitterschnitt-Kennwert Böhm & Hempel Proben-Nr. Schichtdicke Gitterschnitt-Kennwert Blasengrad Korrosion am Ritz (max.) Korrosion am Ritz (MW) Enthaftung am Ritz (MW)	GT 0 0(S0) 4 254 GT 0 6.3.1 1 2 330±21 300±28 0 0 0 0 1,3 1,3 0,5±0,3 0,8±0,3 0,6±0,3 1,0±0,3	0(SO) 4 236 GT 0 6.3.2 1 2	0(50) 4 314 GT 5 6.3.3 Salzsprühne 1 2 Kondenswa	0(SO) Nullprobe 4 238 GT 5 6.3.4 ebeltest 1440 Stun 1 2 290±23 292±17 0 0 0 0,8 0,8 0,6±0,3 0,9±0,3 0,6±0,3 0,9±0,3 35sertest 720 Stune	0(SO) 4 224 GT 5 6.3.5 den 1 2	0(SO) 4 206 GT 5 6.3.6	0(SO) 4 310 GT 0 6.3.7 1 2 234±24 226±12 0 0 0 0 1,3 1,5 0,7±0,3 1,3±0,3 1,0±0,3 1,5±0,5	0(SO) 4 210 GT 0 6.3.8 1 2
Blasengrad Proben-Nr. Schichtdicke Gitterschnitt-Kennwert Böhm & Hempel Proben-Nr. Schichtdicke Gitterschnitt-Kennwert Blasengrad Korrosion am Ritz (max.) Korrosion am Ritz (MW) Enthaftung am Ritz (MW)	GT 0 0(S0) 4 254 GT 0 6.3.1 1 2 330±21 300±28 0 0 0 0 1,3 1,3 0,5±0,3 0,8±0,3 0,6±0,3 1,0±0,3	0(SO) 4 236 GT 0 6.3.2 1 2	0(50) 4 314 GT 5 6.3.3 Salzsprühne 1 2 Kondenswa	0(SO) Nullprobe 4 238 GT 5 6.3.4 ebeltest 1440 Stundon 1 2 2990±23 2992±17 0 0 0 0,8 0,8 0,6±0,3 0,9±0,3 0,6±0,3 0,9±0,3 33ssertest 720 Stundon 3	0(SO) 4 224 GT 5 6.3.5 den 1 2	0(SO) 4 206 GT 5 6.3.6	0(SO) 4 310 GT 0 6.3.7 1 2 234±24 226±12 0 0 0 0 1,3 1,5 0,7±0,3 1,3±0,3 1,0±0,3 1,5±0,5	0(SO) 4 210 GT 0 6.3.8 1 2
Blasengrad Proben-Nr. Schichtdicke Gitterschnitt-Kennwert Böhm & Hempel Proben-Nr. Schichtdicke Gitterschnitt-Kennwert Blasengrad Korrosion am Ritz (max.) Korrosion am Ritz (MW) Enthaftung am Ritz (MW) Proben-Nr. Schichtdicke	GT 0 0(\$0) 4 254 GT 0 6.3.1 1 2 330±21 300±28 0 0 0 0 1,3 1,3 0,5±0,3 0,8±0,3 0,6±0,3 1,0±0,3	0(SO) 4 236 GT 0 6.3.2 1 2	0(50) 4 314 GT 5 6.3.3 Salzsprühne 1 2 Kondenswa 3 244	0(SO) Nullprobe 4 238 GT 5 6.3.4 ebeltest 1440 Stundon 1 2 290±23 292±17 0 0 0 0,8 0,8 0,6±0,3 0,9±0,3 0,6±0,3 0,9±0,3 335sertest 720 Stundon 3 238	0(50) 4 224 GT 5 6.3.5 den 1 2	0(50) 4 206 GT 5 6.3.6 1 2	0(SO) 4 310 GT 0 6.3.7 1 2 234±24 226±12 0 0 0 0 1,3 1,5 0,7±0,3 1,3±0,3 1,0±0,3 1,5±0,5	0(SO) 4 210 GT 0 6.3.8 1 2
Blasengrad Proben-Nr. Schichtdicke Gitterschnitt-Kennwert Böhm & Hempel Proben-Nr. Schichtdicke Gitterschnitt-Kennwert Blasengrad Korrosion am Ritz (max.) Korrosion am Ritz (MW) Enthaftung am Ritz (MW) Proben-Nr. Schichtdicke Gitterschnitt-Kennwert	GT 0 0(\$0) 4 254 GT 0 6.3.1 1 2 330±21 300±28 0 0 0 0 1,3 1,3 0,5±0,3 0,8±0,3 0,6±0,3 1,0±0,3 3 306 GT 0	0(SO) 4 236 GT 0 6.3.2 1 2 3 236 GT 0	0(50) 4 314 GT 5 6.3.3 Salzsprühne 1 2 Kondenswa 3 244 GT 0	0(\$0) Nullprobe 4 238 GT 5 6.3.4 ebeltest 1440 Stun 1 2 2990±23 292±17 0 0 0 0,8 0,8 0,6±0,3 0,9±0,3 0,6±0,3 0,9±0,3 3 238 GT 5	0(SO) 4 224 GT 5 6.3.5 den 1 2	0(50) 4 206 GT 5 6.3.6 1 2 3 202 GT 0	0(SO) 4 310 GT 0 6.3.7 1 2 234±24 226±12 0 0 0 0 1,3 1,5 0,7±0,3 1,3±0,3 1,0±0,3 1,5±0,5 3 294 GT 0	0(SO) 4 210 GT 0 6.3.8 1 2 3 232 GT 0
Blasengrad Proben-Nr. Schichtdicke Gitterschnitt-Kennwert Böhm & Hempel Proben-Nr. Schichtdicke Gitterschnitt-Kennwert Blasengrad Korrosion am Ritz (max.) Korrosion am Ritz (MW) Enthaftung am Ritz (MW) Proben-Nr. Schichtdicke Gitterschnitt-Kennwert	GT 0 0(\$0) 4 254 GT 0 6.3.1 1 2 330±21 300±28 0 0 0 0 1,3 1,3 0,5±0,3 0,8±0,3 0,6±0,3 1,0±0,3 3 306 GT 0	0(SO) 4 236 GT 0 6.3.2 1 2 3 236 GT 0	0(50) 4 314 GT 5 6.3.3 Salzsprühne 1 2 Kondenswa 3 244 GT 0	0(SO) Nullprobe 4 238 GT 5 6.3.4 ebeltest 1440 Stun 1 2 2990±23 292±17 0 0 0 0 0,8 0,8 0,8 0,6±0,3 0,9±0,3 0,6±0,3 0,9±0,3 238 GT 5 0(SO)	0(SO) 4 224 GT 5 6.3.5 den 1 2	0(50) 4 206 GT 5 6.3.6 1 2 3 202 GT 0	0(SO) 4 310 GT 0 6.3.7 1 2 234±24 226±12 0 0 0 0 1,3 1,5 0,7±0,3 1,3±0,3 1,0±0,3 1,5±0,5 3 294 GT 0	0(SO) 4 210 GT 0 6.3.8 1 2 3 232 GT 0
Blasengrad Proben-Nr. Schichtdicke Gitterschnitt-Kennwert Böhm & Hempel Proben-Nr. Schichtdicke Gitterschnitt-Kennwert Blasengrad Korrosion am Ritz (max.) Korrosion am Ritz (MW) Enthaftung am Ritz (MW) Proben-Nr. Schichtdicke Gitterschnitt-Kennwert Blasengrad	GT 0 0(S0) 4 254 GT 0 6.3.1 1 2 330±21 300±28 0 0 0 0 1,3 1,3 0,5±0,3 0,8±0,3 0,6±0,3 1,0±0,3 3 306 GT 0 0(S0)	0(SO) 4 236 GT 0 6.3.2 1 2 3 236 GT 0 0(SO)	0(50) 4 314 GT 5 6.3.3 Salzsprühne 1 2 Kondenswa 3 244 GT 0 0(50)	0(SO) Nullprobe 4 238 GT 5 6.3.4 ebeltest 1440 Stun 1 2 2990±23 292±17 0 0 0,8 0,8 0,6±0,3 0,9±0,3 0,6±0,3 0,9±0,3 3 assertest 720 Stund 3 238 GT 5 0(SO) Nullprobe	0(SO) 4 224 GT 5 6.3.5 den 1 2	0(SO) 4 206 GT 5 6.3.6 1 2 3 202 GT 0 0(SO)	0(SO) 4 310 GT 0 6.3.7 1 2 234±24 226±12 0 0 0 0 1,3 1,5 0,7±0,3 1,3±0,3 1,0±0,3 1,5±0,5 3 294 GT 0 0(SO)	0(SO) 4 210 GT 0 6.3.8 1 2 3 232 GT 0 0(SO)

Zusatzprüfungen – 4000 h Salzsprühnebeltest an Laborproben IKS

Probenvorbehandlung: Zinkphosphatierung von Chemetall

Pulverneuentwicklung	11	12	13	14	15	16	17	18
Schichtdicke µm	168 ± 12	171 ± 9	171 ± 10	147 ± 13	157 ± 8	167 ± 8	162 ± 9	162 ± 8
Blasengrad	0 (S0)	0 (S0)	0 (S0)	0 (S0)				
Korrosion am Ritz (max.)	1,0	1,5	1,5	1,0	1,3	1.5	1,3	1,5
Korrosion am Ritz (MW)	0,9 ± 0.2	0,9 ± 0.2	1,0 ± 0,3	0,9 ± 0,2	0.9 ± 0.2	1,1 ± 0,2	0,9 ± 0,2	1,1 ± 0,2
Enthaftung am Ritz (MW)	0,9 ± 0.2	0,9 ± 0.2	1,0 ± 0,3	0,9 ± 0,2	0.9 ± 0.2	1,1 ± 0,2	0,9 ± 0,2	1,1 ± 0,2
Gitterschnitt Gt (24 h)	0	0	0	0	0	0	00	0
Abreißfestigkeit MPa	15,7 ± 2,4	15,9 ± 0,5	13,5 ± 3,9	14,1 ± 1,8	18,5 ± 2,9	19,4 ± 4,8	21,9 ± 1,3	18,8 ± 0,5
Bruchbild %	100 Y/Z	100 Y/Z	100 Y/Z	100 Y/Z				
Rostgrad Ri	Ri O	Ri O	Ri O	Ri O				
Rissgrad	0 (S0)	0 (S0)	0 (S0)	0 (S0)				
Grad des Abblätterns	0 (S0)	0 (S0)	0 (S0)	0 (S0)				

Nach 4000 Stunden Salzsprühnebeltest und anschließender Ritzauswertung nur geringfügige Unterschiede zwischen den einzelnen Pulverneuentwicklungen.

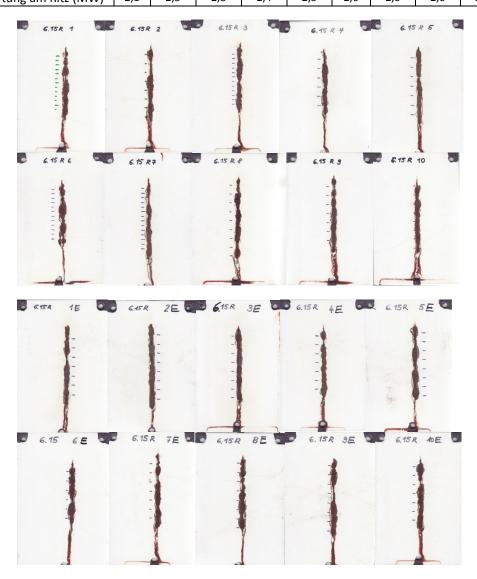
6 Untersuchungen zur Reproduzierbarkeit der Ergebnisse und Vergleich Projektpartner ZAFT – IKS (Versuchsserie 5)

Korrosionsschutzuntersuchungen in Salzsprühnebelkammer am ZAFT:

Ritze am ZAFT	5_1	5_2	5_3	5_4	5_5						
Salzsprühnebeltest 1440 h											
Schichtdicke	152 ± 20	159 ± 15	157 ± 10	171 ± 5	162 ± 15						
Gitterschnitt-Kennwert (24 h)	0	0	0	0	0						
Blasengrad (sofort)	0 (S0)										
Korrosion am Ritz (Mw.)	1,8 ± 0,6	2,1 ± 0,6	2,0 ± 0,5	2,2 ± 0,7	2,3 ± 0,9						
Korrosion am Ritz (max.)	2,8	3,3	2,8	3,8	3,8						

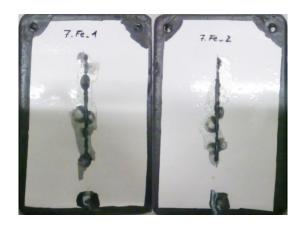
Ritze am IKS	5_6	5_7	5_8	5_9	5_10						
Salzsprühnebeltest 1440 h											
Schichtdicke	139 ± 25	177 ± 10	140 ± 20	143 ± 10	181 ± 30						
Gitterschnitt-Kennwert (24 h)	0	0	0	0	0						
Blasengrad (sofort)	0 (S0)										
Korrosion am Ritz (Mw.)	1,9 ± 0,6	1,4 ± 0,7	2,2 ± 0,5	2,2 ± 0,8	1,9 ± 0,6						
Korrosion am Ritz (max.)	2,8	3,3	2,8	3,3	3,3						

Korrosionsschutzuntersuchungen in Salzsprühnebelkammer am IKS:


Ritze am ZAFT	Z1	Z2	Z3	Z4	Z 5
		Salzs	prühnebel 1440 Stu	nden	
Schichtdicke (µm)	205 ± 27	219 ± 22	244 ± 32	209 ± 28	236 ± 28
Gitterschnitt-Kennwert (24h)	0	0	0	0	0
Blasengrad (sofort)	0 (S0)	0 (S0)	0 (S0)	0 (S0)	0 (S0)
Korrosion am Ritz (max.)	4,8	5,0	5,0	4,8	4,8
Korrosion am Ritz (MW)	3.9 ± 0.6	$4,2 \pm 0,7$	4.0 ± 0.6	$3,7 \pm 0,6$	3,1 ± 1,0
Enthaftung am Ritz (MW)	4.0 ± 0.6	4.2 ± 0.7	4.0 ± 0.6	$3,7 \pm 0,6$	3,1 ± 1,0
Abreißfestigkeit (MPa)	9,1	9,1	11,5	11,9	13,9
Bruchbild (%)	100 Y/Z	100 Y/Z	100 Y/Z	100 Y/Z	100 Y/Z
Ritze am IKS	1	2	3	4	5
		Salzs	prühnebel 1440 Stu	nden	
Schichtdicke (µm)	235 ± 25	233 ± 43	189 ± 22	153 ± 22	226 ± 25
Gitterschnitt-Kennwert (24h)	0	0	0	0	0
Blasengrad (sofort)	0 (S0)	0 (S0)	0 (S0)	0 (S0)	0 (S0)
Korrosion am Ritz (max.)	4,8	4,8	4,3	4,8	4,8
Korrosion am Ritz (MW)	$3,3 \pm 0,8$	3.7 ± 0.7	$3,9 \pm 0,4$	$3,7 \pm 0,5$	$3,6 \pm 0,9$
Enthaftung am Ritz (MW)	$3,4 \pm 0,9$	3,7 ± 0,7	$3,9 \pm 0,2$	3,7 ± 0,5	$3,6 \pm 0,9$
Abreißfestigkeit (MPa)	13,2	10,5	8,4	12,6	11,8
Bruchbild (%)	100 Y/Z	100 Y/Z	100 Y/Z	100 Y/Z	100 Y/Z

Proben aus der Salzsprühkammer am IKS zeigen etwas größere Korrosion am Ritz.

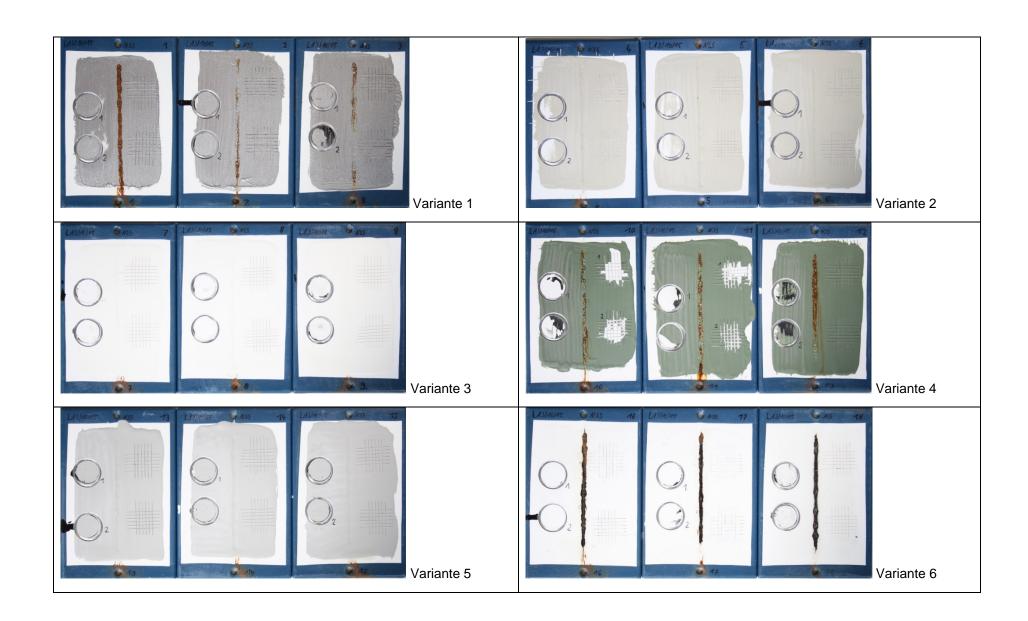
Reproduzierbarkeit der Ergebnisse


		Salzsp	rühnebe	eltest 14	40 Stunc	len				
		Versu	ch 6.15	R ohne	Entfett	ung				
	1	2	3	4	5	6	7	8	9	10
	225	178 ±	175 ±	175 ±	199 ±	188 ±	218 ±	207 ±	146 ±	209 ±
Schichtdicke	± 19	21	19	35	29	8	21	24	12	18
Gitterschnitt-Kennwert	0	0	0	0	0	0	0	0	0	0
Blasengrad	0	0	0	0	0	0	0	0	0	0
Korrosion am Ritz (max.)	3,0	2,3	2,8	2,8	2,3	2,8	2,3	2,8	2,5	2,8
Korrosion am Ritz (MW)	2,0	1,7	1,9	1,5	1,8	1,8	1,6	1,9	1,7	1,9
Enthaftung am Ritz (MW)	2,2	2,2	2,3	1,8	1,8	2,5	1,6	2,4	2,1	2,2
		Versu	h 6.15	R E mit	Entfetti	ıng)				
Proben-Nr.	1 E	2E	3E	4E	5E	6E	7E	8E	9E	10E
	225	178 ±	175 ±	175 ±	199 ±	188 ±	218 ±	207 ±	146 ±	209 ±
Schichtdicke	± 19	21	19	35	29	8	21	24	12	18
Gitterschnitt-Kennwert	0	0	0	0	0	0	0	0	0	0
Blasengrad	0	0	0	0	0	0	0	0	0	0
Korrosion am Ritz (max.)	2,8	2,8	2,8	2,8	3,3	3,3	2,8	2,8	2,8	3,0
Korrosion am Ritz (MW)	1,7	2,4	2,4	2,2	1,9	2,4	1,9	1,9	2,1	2,2
Enthaftung am Ritz (MW)	2,1	2,5	2,8	2,4	2,5	2,6	2,0	2,6	2,3	2,7

7 Referenzuntersuchungen Duplexsystem

Versuche bei Torwerk Weimar

	Feu	ıerzink	Spritzve	rzinkung	
		7.Fe	7.	Sp	
	visuelle Beurt	eilung			
	Ausg	asungen	i.e	0.	
Sa	lzsprühnebeltest 1	440 Stunden			
Proben-	Nr. 1	2	1	2	
Schichtdicke incl. Zinküberzug	265 ± 15	290 ± 16	278 ± 24	273 ± 23	
Gitterschnitt-Kennwert	0	0	0	0	
Blasengrad	0	0	0	0	
Korrosion am Ritz (max.)	0	0	0	0	
Korrosion am Ritz (MW)	0	0	0	0	
Enthaftung am Ritz (MW)	6,2 \pm 1,5	$\textbf{6,5} \pm \textbf{1,3}$	1,3 ± 0,8	$\textbf{1,3} \pm \textbf{0,3}$	
Ko	ondenswassertest	720 Stunden			
Proben-	Nr. 3	4	3	4	
Schichtdicke incl. Zinküberzug	253 ± 25	$\textbf{273} \pm \textbf{9}$	284 ± 23	249 ± 8	
Gitterschnitt-Kennwert	0	0	0	0	
Blasengrad	0	0	0	0	
	Nullprob	e			
Proben-	Nr.	5	Į.	5	
Schichtdicke	29	3 ± 23	320	± 23	
Schichtdicke incl. Zinküberzug	0	0	0	0	
	Schlagvers	uch			
Proben-	Nr.	6	(5	
Schichtdicke	27	78 ± 11	237 ± 17		
Fallhöhe 50 cm	Abplat	zungen VS	i.O.		
Fallhöhe 100 cm	Abplat	zungen VS	i.0	0.	


ΔT-Test nach AGK Blatt 1 an Duplexsystemen

- 6 Parallelproben
- verzinkter Stahl, gesweept Rz. 30 μm Beschichtung GB 4 + SAJ16G
- 14 Tage Belastung

8 Untersuchungen zu Ausbesserungssystemen

	Variante 1			Variante 2		
	Probe 1	Probe 2	Probe 3 angeschliffen	Probe 4	Probe 5	Probe 6 angeschliffen
Schichtdicke µm (Pulverbesch.)	164 ± 12	155 ± 20	133 ± 9	143 ± 10	157 ± 11	180 ± 10
Schichtdicke µm (Reparatur)	59	65	63	71	58	71
Blasengrad	0 (S0)	0 (S0)	0 (S0)	0 (S0)	0 (S0)	0 (S0)
Gitterschnitt Gt (24 h)	0	0	0	0	0	0
Abreißfestigkeit MPa	9,2	5,9	4,2	15,8	15,1	18,9
Bruchbild %	100D	100D	50D, 50Y	50C/D, 50D	50C/D, 50D	100D
Rostgrad Ri	Ri 0	Ri 0	Ri 0	Ri 0	Ri 0	Ri 0
Rissgrad	0 (S0)	0 (S0)	0 (S0)	0 (S0)	0 (S0)	0 (S0)
Grad des Abblätterns	0 (S0)	0 (S0)	0 (S0)	0 (S0)	0 (S0)	0 (S0)
	Variante 3			Variante 4		
	Probe 7	Probe 8	Probe 9 angeschliffen	Probe 10	Probe 11	Probe 12 angeschliffen
Schichtdicke µm (Pulverbesch.)	156 ± 12	170 ± 9	137 ± 11	160 ±14	171 ± 7	180 ± 12
Schichtdicke µm (Reparatur)	104	104	134	76	100	77
Blasengrad	0 (S0)	0 (S0)	0 (S0)	0 (S0)	0 (S0)	0 (S0)
Gitterschnitt Gt (24 h)	0	0	0	5	3	0
Abreißfestigkeit MPa	23,8	21,6	6,7	7,4	ungültig	10,0
Bruchbild %	100Y (RS)	20C/D, 80Y(RS)	100Y/Z (RS)	100Y/Z (RS)	ungültig	60D, 40Y/Z
Rostgrad Ri	Ri 0	Ri 0	Ri 0	Ri 0	Ri 0	Ri 0
Rissgrad	0 (S0)	0 (S0)	0 (S0)	0 (S0)	0 (S0)	0 (S0)
Grad des Abblätterns	0 (S0)	0 (S0)	0 (S0)	0 (S0)	0 (S0)	0 (S0)
	Variante 5			Variante 6		
	Probe 13	Probe 14	Probe 15 angeschliffen	Probe 16	Probe 17	Probe 18 angeschliffen
Schichtdicke µm (Pulverbesch.)	187 ± 12	179 ± 4	158 ± 6	166 ± 7	147 ± 15	148 ± 11
Schichtdicke µm (Reparatur)	134	129	130	125	127	164
Blasengrad	0 (S0)	0 (S0)	0 (S0)	0 (S0)	0 (S0)	0 (S0)
Gitterschnitt Gt (24 h)	0	0	0	3-4	4	0
Abreißfestigkeit MPa	16,0	14,3	16,6	14,1	20,1	22,3
Bruchbild %	100D	100Y/Z (RS)	100D	100C/D	90C/D, 10Y	100Y/Z (RS)
Rostgrad Ri	Ri 0	Ri 0	Ri 0	Ri 0	Ri 0	Ri 0
Rissgrad	0 (S0)	0 (S0)	0 (S0)	0 (S0)	0 (S0)	0 (S0)
Grad des Abblätterns	0 (S0)	0 (S0)	0 (S0)	0 (S0)	0 (S0)	0 (S0)

9 Freibewitterung von Musterbauteilen – Ergebnisse nach 1 Jahr Bewitterung

Flughafen Halle-Leipzig

Autobahn

Leppersdorf

Freibewitterungsstand IKS Dresden

- keine Enthaftung am Ritz, keine Blasen- und Rostbildung auf Fläche
- keine Korrosion an korrekt ausgeführten Schweißnähten und sauber gebrochenen Kanten
- beginnende Korrosion an problematischen Stellen (durchbrochene Schweißnähte, harten Kanten), wie erwartet